Umbral presentations for polynomial sequences
نویسنده
چکیده
Using random variables as motivation, this paper presents an exposition of formalisms developed in [RT1, RT2] for the classical umbral calculus. A variety of examples are presented, culminating in several descriptions of sequences of binomial type in terms of umbral polynomials.
منابع مشابه
2 4 A ug 1 99 9 Umbral presentations for polynomial sequences
Using random variables as motivation, this paper presents an exposition of formalisms developed in [RT1, RT2] for the classical umbral calculus. A variety of examples are presented, culminating in several descriptions of sequences of binomial type in terms of umbral polynomials.
متن کاملAn Algebraic Exposition of Umbral Calculus with Application to General Linear Interpolation Problem – a Survey
A systematic exposition of Sheffer polynomial sequences via determinantal form is given. A general linear interpolation problem related to Sheffer sequences is considered. It generalizes many known cases of linear interpolation. Numerical examples and conclusions close the paper. 1. The modern umbral calculus In the 1970s Rota and his collaborators [17,19,20] began to construct a completely rig...
متن کاملRecurrence Relations for Polynomial Sequences via Riordan Matrices
We give recurrence relations for any family of generalized Appell polynomials unifying so some known recurrences of many classical sequences of polynomials. Our main tool to get our goal is the Riordan group. We use the product of Riordan matrices to interpret some relationships between different families of polynomials. Moreover using the Hadamard product of series we get a general recurrence ...
متن کامل9 F eb 1 99 5 Maple Umbral Calculus Package
Rota’s Umbral Calculus uses sequences of Sheffer polynomials to count certain combinatorial objects. We have developed a Maple package that implements Rota’s Umbral Calculus and some of its generalizations. A Mathematica version of this package is being developed in parallel.
متن کاملPolynomial Sequences of Binomial Type and Path Integrals
Polynomial sequences pn(x) of binomial type are a principal tool in the umbral calculus of enumerative combinatorics. We express pn(x) as a path integral in the “phase space” N× [−π, π]. The Hamiltonian is h(φ) = ∑n=0 p ′ n(0)/n!e inφ and it produces a Schrödinger type equation for pn(x). This establishes a bridge between enumerative combinatorics and quantum field theory. It also provides an a...
متن کامل